

DATA SHEET

HPx-200e Primary Radar Acquisition

Features:

- PCIe Primary Radar Acquisition Card
- Dual analogue video inputs
- Trigger input
- ACP/ARP or parallel azimuth
- Optional synchro input from companion synchro-to-parallel PCI card (HPx-180)
- 50 MHz sample rate
- Programmable pre-trigger compensation
- 8-bit digital inputs with clock
- 12-bit A-to-D for analogue samples
- Wide range of supported signal levels
- Opto-coupled inputs for noise immunity
- Optional end-of-range input signal
- Programmable mixing of analogue and digital videos
- · General purpose input/output lines
- Loss of signal detection
- · High-speed DMA transfers
- Supported under Windows and Linux
- · C/C++ board support package
- Optional SPx processing library for dynamic thresholding, STC, FTC, clutter suppression, plot extraction, scan conversion, compression and network distribution.
- · On-board test pattern generator
- Software and function compatible with HPx-200
- Supported with RadarView and SPx Server applications
- · Wide range of radars supported including:
 - Furuno
 - Kelvin Hughes
 - Terma
 - JRC
 - Koden
 - Sperry
 - Raytheon
 - Specialist Military Radars

The HPx-200e is a high-performance PCI Express-based radar acquisition card that captures and processes one or two analogue or up to 8 bits of digital primary radar video. The card may be used with a board support library for basic radar signal acquisition, or else with Cambridge Pixel's SPx library for complex processing, tracking or display requirements.

Radar Capture

The HPx-200e interfaces to analogue or digital radar signals, and provides a flexible set of input options to handle a wide range of radar types. A flexible mixing capability allows a combination of analogue and digital inputs to be captured and combined.

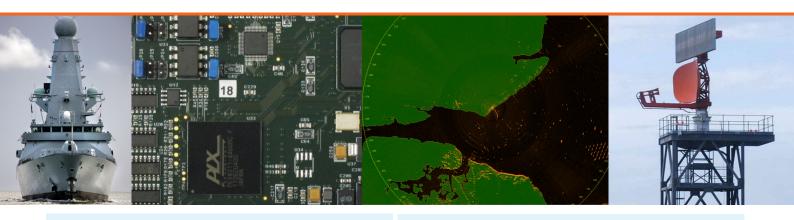
The dual analogue inputs are captured at up to 50 MHz using high precision analogue to digital converters at 12 bits resolution. The captured video can be optionally down-sampled to reduce the data rate before transfer across the PCI bus using high-speed DMA. On the host computer, a driver and board-support library for Windows or Linux is available. Additionally, the SPx processing library is available to provide a full complement of radar processing functions including scan conversion and target tracking.

An on-board FPGA provides data processing and control and offers capability for expanding the data processing functions for customised applications.

Input Signals

The HPx-200e accepts radar video, trigger and azimuth signals in the form of ACP/ARP or parallel data. A wide variety of signal types and input voltages are supported and customised versions of the interface are available on request. The card provides a capability to detect missing signals to provide software alarms for loss of triggers or azimuth data. For use with synchro or resolver signals, the companion HPx-180 PCI card provides a synchro-to-parallel converter. Note that the use of the HPx-180 requires an available PCI slot adjacent to the HPx-200e card.

Board Support Library and SPx Processing


A low-level board support library is available to provide a C++ class interface to configure the board and capture video. Sample code for Windows and Linux is available.

The optional SPx processing library is an extensible toolkit of radar specific functions that can be linked together to form a processing chain. Using this library, radar video can be processed prior to network distribution, scan-conversion or tracking. Custom functions are easily incorporated into the processing chain, allowing an application to be built from a combination of SPx library functions and user-written processing modules.

SPx Distribution and Scan Conversion

The captured video may be compressed, distributed or displayed with the SPx library software. A complete server application, optionally incorporating radar recording and scenario generation, is built from just a few function calls into the SPx library. Server applications that capture, compress and distribute radar video on standard Ethernet networks are easily built. Client applications can be built with high-performance software-based scan conversion with Windows or Linux displays.

DATA SHEET

Architecture

Form factor: PCle (x1, half length)
Interface: PCle bus, x1 lane width
Programming: C/C++ software library
Platform: Windows 10, Linux

Processor: x86

Functional

Radar Video: 2 x Analogue (configurable gain/offset in range -5V +5V),

75 Ohm termination (link selectable).

8 x Digital (RS422) with clock

Azimuth Data: ACP/ARP or parallel azimuth

RS422 or discrete single-ended configurable for 3 to 60 $\rm V$

signal input with option for opto-coupled inputs for

electrical isolation.

Link selectable 75 Ohm or high-R input.

Trigger: RS422 or discrete single-ended configurable for 3V to

60V signal input with option for opto-coupled inputs for

electrical isolation.

Link selectable 75 Ohm or high-R input Programmable range zero trigger delay

End Range Signal: Optional input signal to terminate sampling

RS422 or discrete signal up to 60V.

Video Combiner: Programmable mix of analogue and

digital inputs using LUT

Test Generation: Built-in test pattern generator

Output: Radar returns onto PCIe bus

Radar Capture: Programmable return length up to 64k

Staggered PRFs supported

12-bit A-to-D.

General: 3 general purpose input/output lines, each configurable

as input or output.

Connectors

Radar Input: 37W D connector for videos, trigger and ACP/ARP

On-board IDC connector for parallel azimuth input

PCIe: Standard PCIe connector (x1 lane width) DMA transfers

up to 100 MB/sec.

Performance

Sample Frequency: 50 MHz (for higher capture rates consult factory)

Maximum input BW: 25 MHz
PRF: 0 to 16 kHz
Samples per return: Up to 64k

Returns per scan: Up to 16k

Data transfer rate: 50,000 samples/sec
Scan rate: Up to 120 rpm

Environmental

Cooling: Forced air cooling

Temperature: 0 to 55C

Software Support

Board support library (C/C++) SPx Development Library

RadarView Radar Visualisation Client

SPx Server (Distribution, Plot Extraction, Tracking)

For more information, please contact:

