

SPx Application Note

CP-16-110-115 Version 1.2 Page 1

Scan-converting to a Bitmap
How to use bitmaps as the destination of the scan-conversion process, and how to avoid artefacts

when using and rendering the bitmaps

Summary

Cambridge Pixel’s SPx radar software can send scan-converted radar video in PPI and B-

Scan formats to a graphical display or, alternatively, to a bitmap for use by application

software.

Scan-conversion to a bitmap is often an effective generic method for receiving the image

into an application, and can be used with normal Windows, X11, Open GL or any other

graphics library.

However, it is important to handle the bitmap in a way that prevents conflict between the

scan-conversion and rendering processes and the resulting image artefacts.

This application note briefly discusses the issues and their resolution, with references to

example code.

The SPxScDestBitmap class

As shown in Figure 1, a scan conversion object such as SPxScSourceLocal or

SPxScSourceNet can use the software class SPxScDestBitmap as the destination of the

scan conversion process. This class uses a graphics-independent bitmap to hold the

scan-converted video. The user’s application can use the contents of the bitmap in a

number of ways. These may include saving a sequence of scan-converted images to a

file, converting them to an encoded video stream, performing image processing, or

simply combining with other graphics sources to produce a composite image for display,

potentially using a non-standard graphics display library.

Figure 1 – Two typical configurations of SPx objects for radar
acquisition and display application

The principal elements of the SPxScDestBitmap object are as follows.

SPxPIM SPxRIB Radar
Source SPxScSourceLocal SPxScDestBitmap

Application

SPxScSourceNet SPxScDestBitmap

Application

Network
video

SPx Application Note

CP-16-110-115 Version 1.2 Page 2

Bitmap creation. SPxScDestBitmap can use either 8-bit or 32-bit bitmaps. Since the

output from the scan converter is typically 8-bits per pixel, using an 8-bit bitmap as the

destination means that the destination bitmap contains only intensity information,

without any colour values. Adding colour to the radar image would be achieved within

the user’s application. However, if a 24-bit bitmap is used as the destination, each pixel

is represented in ARGB format (alpha value and red/green/blue), and the functions

SetRadarColour() and SetRadarBright() can be used to control the radar colour and

brightness, with the function SetRadarLUT() providing full flexibility in mapping 8-bit to

32-bit values.

SPxScDestBitmap can allocate its own memory for holding the bitmap. However, it is

also possible to supply the class with a pre-allocated bitmap. This can be useful, for

example, if the use of a platform-specific format such as a Windows HBITMAP would

make application programming more straightforward. In this case, the user can either

create an HBITMAP directly or use the SPxBitmapWin class as a wrapper around an

HBITMAP. A pointer to the memory allocated is then passed into SPxScDestBitmap.

Updates and notifications. The scan converter providing data to SPxScDestBitmap

generates updates to the scan-converted view at a rate of approximately 50Hz (once

every 20msec). Every time an update occurs, SPxScDestBitmap can notify its client, the

application software, so that appropriate action can be taken. For a normal rotating

radar, the updates will take form of a set of small patches clustered along the leading

edge of the radar’s sweep. The notification handler is provided with the dimensions and

location of the bounding box that encloses the full set of patches generated by the scan

converter since the last acknowledged update (the ‘dirty box’). This information can be

used by the application to copy only that part of the bitmap that has been changed.

Fading. The process of fading scan-converted radar video involves replacing each pixel

in the bitmap with a smaller value. Three types of fading are supported by the SPx

software. Sweep-based fading updates the entire scan-converted bitmap once per radar

rotation. In replace mode, no fading is performed, and pixels are simply overwritten by

the new radar video as each segment of the bitmap is updated. When real-time fading is

selected, however, every pixel in the bitmap has to be updated at regular intervals so

that the entire bitmap contents are faded correctly. In this mode, the application is

responsible for calling the FadeBitmap() function on a timed basis to ensure that fading

happens correctly. This should be not be done within the update notification handler, so

that fading continues even in the absence of new radar video being supplied to the scan

converter.

Handling the scan-converted bitmap

As discussed above, the contents of the scan-converted bitmap are regularly updated.

The application software needs to make use of this data for downstream processing or

rendering. The two methods discussed here are denoted synchronous and asynchronous.

Asynchronous. With this approach, the application code copies or processes scan-

converted video from the bitmap without reference to the notification process that

indicates to the application code that new data is available. This approach can yield

acceptable results. However, a potential problem lies in the fact that the scan-converted

SPx Application Note

CP-16-110-115 Version 1.2 Page 3

video may be changed by the scan converter at the same time as it is being copied from

the bitmap by the application. This is made even more likely since the asynchronous

method does not have access to the dirty box indicating the changed part of the bitmap,

so the entire bitmap must be copied each time. The asynchronous approach can result in

visible artefacts in the radar video image when it is eventually rendered to a display,

typically appearing as tearing in the image.

Synchronous. Within the notification handler registered with SPxScDestBitmap, the

application code copies the scan-converted video from the bitmap into a temporary

buffer, thereby ensuring that the video is not being updated during the copy. The dirty

box can be used to reduce and thus optimise the transfer size. Independently of these

updates, the application can retrieve the contents of the buffer for processing or

rendering. A mutex lock is used to ensure that there is no conflict between the

notification handler writing into the buffer and the application code that reads and uses

the contents of the buffer. The application code keeps its own notion of a dirty box

whose extent is increased each time the buffer is updated, allowing the application to

select for processing only those parts of the buffer that have been updated.

Figure 2 – Two approaches to handling the scan-converted bitmap

These two approaches are illustrated in the example solution SPxWinBitmap, which is

supplied as part of the standard SPx developer’s release. This example allows the user

to select either asynchronous or synchronous operation and to observe the difference in

behavior. The file SPxWinBitmapDisplay.cpp contains the primary routines for

copying and using the bitmap. In asynchronous mode, the function

redrawWindowFromBitmap() is used, and in synchronous mode the functions

CopyBitmapToOffscreen() and redrawWindowFromOffscreen() are used.

< End of document >

SPxScDestBitmap

Bitmap

Application

SPxScDestBitmap

Bitmap

Application

Buffer

ASYNCHRONOUS

SYNCHRONOUS

	How to use bitmaps as the destination of the scan-conversion process, and how to avoid artefacts when using and rendering the bitmaps
	The SPxScDestBitmap class
	Handling the scan-converted bitmap

